

Relais à contacts guidés pour circuit imprimé 8 A

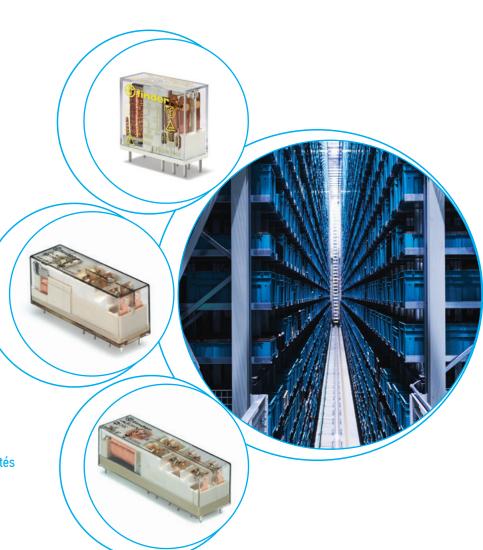
Palans et grues

Escalators

Appareils médicaux

Hôpitaux

Entrepôts de stockage automatisés


Ascenseurs, élévateurs

Ascenseurs adaptés

Machines à bois

Relais circuit imprimé à contacts guidés selon la norme EN 61810-3 - Type B

Type 50.12...x000

- 2 contacts 8 A
- Contacts AgNi, AgSnO₂

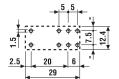
Type 50.12...5000

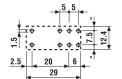
- 2 contacts 8 A
- Contacts AgNi + Au
- Séparation physique élevée entre contacts adjacents
- Contacts sans Cadmium
- Isolement entre bobine et contacts : 8 mm, 6 kV (1.2/50 μ s)
- Étanche au flux : RT II

50.12...x000

- Conseillé pour la commutation de charge moyenne en continu (DC)
- Pas 5 mm
- Montage sur circuit imprimé

50.12...5000


iggledignfinder



- Pour applications de sécurité
- Contacts plaqués-or pour la commutation de faibles charges
- Pas 5 mm
- Montage sur circuit imprimé

A1	12 11 14
	12 P
A2	22 21 24

POUR UL HORSEPOWER ET PILOT DUTY RATINGS VOIR:

utilisés comme contacts quidés.

* Selon EN 61810-3, seuls les contacts 1 NO et 1 NC (11-14 et 21-22 ou 11-12 et 21-24) doivent être

"Information techniques générales" page V

Vue coté cuivre

Vue coté cuivre

—/10·10⁶

 $100 \cdot 10^{3}$

10/4

6 (8 mm)

1500

-40...+70

RT II

Pour le schéma d'encombrement voir page 7		Tac cote canne	Tue este cuitte	
Caractéristiques des contacts				
Configuration des contacts			2 inverseurs	2 inverseurs
Courant nominal/Courant max. in:	stantané	Α	8/15	8/15
Tension nominale/Tension max. cor	mmutable	V AC	250/400	250/400
Charge nominale en AC1		VA	2000	2000
Charge nominale AC15 (230 V AC)		VA	500	500
Puissance moteur monophasé (23	0 V AC)	kW	0.37	0.37
Pouvoir de coupure en DC1 : 24/1	10/220 V	Α	8/0.65/0.2	8/0.65/0.2
Charge mini commutable	mW (V	//mA)	500 (10/10)	50 (5/5)
Matériau des contacts standard			AgNi, AgSnO₂	AgNi + Au
Caractéristiques de la bobine				
Tension d'alimentation	V AC (50/6	0 Hz)	_	_
nominale (U_N)		V DC	5 - 6 - 12 - 24 - 48 - 60 - 110 - 125	5 - 6 - 12 - 24 - 48 - 60 - 110 - 125
Puissance nominale AC/DC	VA (50 F	łz)/W	—/0.7	—/0.7
Plage d'utilisation	AC (5	0 Hz)	_	_
		DC	(0.751.2)U _N	(0.751.2)U _N
Tension de maintien	Α	C/DC	—/0.4 U _N	—/0.4 U _N
Tension de relâchement	Α	C/DC	—/0.1 U _N	—/0.1 U _N
Caractéristiques générales				

cycles

Durée de vie électrique à pleine charge AC1 cycles
Temps de réponse : excitation/désexcitation ms
Isolement entre bobine et contacts (1.2/50 µs) kV
Rigidité diélectrique entre contacts ouverts VAC
Température ambiante °C

Homologations (suivant les types)

Catégorie de protection

Durée de vie mécanique AC/DC

@ [H[@

—/10 · 10⁶

 $100 \cdot 10^{3}$

10/4

6 (8 mm)

1500

-40...+70

RT II

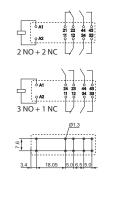
Relais circuit imprimé à contacts guidés selon la norme EN 61810-3 - Type A

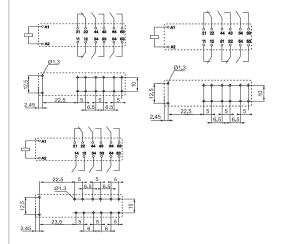
Type 50.14...4220/4310

- 4 contacts 8 A (2 NO + 2 NC) ou (3 NO +1 NC)
- Contacts AgSnO₂

Type 50.16...5420/5510/5330

- 6 contacts 8 A (4 NO + 2 NC) ou (5 NO +1 NC)
- Contacts AgSnO₂ + Au
- Séparation physique élevée entre contacts adjacents
- Contacts sans Cadmium
- Bobine DC 800 mW
- Isolement entre bobine et contacts : 8 mm, $6 \text{ kV} (1.2/50 \mu \text{s})$
- Montage sur circuit imprimé
- Lavable : RT III




- Pour applications de sécurité
- 4 contacts 8 A
- Montage sur circuit imprimé

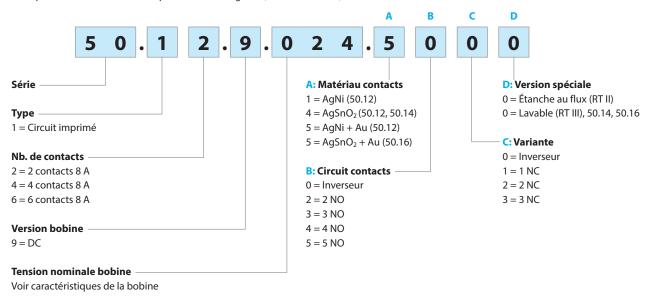
50.16

- Pour applications de sécurité
- 6 contacts 8 A
- Montage sur circuit imprimé

Pour UL Horsepower et Pilot Duty Ratings Voir : "Information techniques générales" page V

Pour le schéma d'encombrement voir page 7

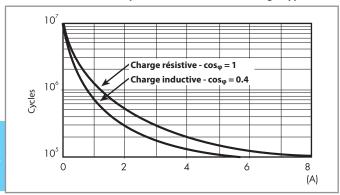
Vue	côté	cuivre
-----	------	--------


Vue côté cuivre

Caractéristiques des contacts			
Configuration des contacts		2 NO +2 NC, 3 NO + 1 NC	4 NO +2 NC, 5 NO + 1 NC, 3 NO + 3 NC
Courant nominal/Courant max. instantané A		8/15	8/15
Tension nominale/Tension max. co	Tension nominale/Tension max. commutable VAC		250/400
Charge nominale en AC1	VA	2000	2000
Charge nominale AC15 (230 V AC	C) VA	690	1150
Puissance moteur monophasé (2	230 V AC) kW	0.37	0.37
Pouvoir de coupure en DC1 : 24/	′110/220 V A	8/0.6/0.2	8/0.6/0.2
Charge mini commutable	mW (V/mA)	50 (5/10)	50 (5/10)
Matériau des contacts standard		AgSnO₂	AgSnO ₂ + Au
Caractéristiques de la bobine			
Tension d'alimentation	V AC (50/60 Hz)	_	_
nominale (U _N)	V DC	12 - 24 - 48 - 110	12 - 24 - 48 - 110
Puissance nominale AC/DC	VA (50 Hz)/W	—/0.8	—/0.8
Plage d'utilisation AC (50 Hz)		_	_
	DC	(0.751.2)U _N	(0.751.2)U _N
Tension de maintien	AC/DC	—/0.4 U _N	—/0.4 U _N
Tension de relâchement	AC/DC	—/0.1 U _N	—/0.1 U _N
Caractéristiques générales			
Durée de vie mécanique AC/DC cycles		—/10 · 10 ⁶	—/10·10 ⁶
Durée de vie électrique à pleine c	harge AC1 cycles	100 · 10³	100 · 10³
Temps de réponse : excitation/désexcitation ms		10/4	10/4
Isolement entre bobine et contacts (1.2/50 μs) kV		6 (8 mm)	6 (8 mm)
Rigidité diélectrique entre contacts ouverts VAC		1500	1500
Température ambiante °C		-40+70	-40+70
Catégorie de protection		RT III	RT III
Homologations (suivant les types)			[A[🛕 c Fu °us

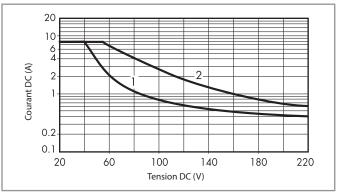
Codification

Exemple: série 50 relais circuit imprimé à contacts guidés, 2 inverseurs 8 A, tension bobine 24 V DC.


Caractéristiques générales

Isolement selon EN 61810-1			
Tension nominale du réseau	V AC	230/400	
Tension nominale d'isolement	V AC	250	400
Degré de pollution		3	2
Isolement entre bobine et contacts			
Type d'isolation		Renforcée (8 mm)	
Catégorie de surtension		III	
Tension assignée de tenue aux chocs kV (1.	2/50 μs)	6	
Rigidité diélectrique	V AC	4000	
Isolement entre contacts adjacents			
Type d'isolation		Principale	
Catégorie de surtension		III	
Tension assignée de tenue aux chocs kV (1.	2/50 μs)	4	
Rigidité diélectrique (50.12, 50.16)	V AC	3000	
Dielectric strength (50.14)	V AC	2500	
Isolement entre contacts ouverts			
Type d'interruption		Micro-coupure de circuit	
Rigidité diélectrique V AC/kV (1.	2/50 μs)	1500/2.5	
Immunité aux perturbations conduites			
Surge (1.2/50 μ s) (mode différentiel) selon EN 61000-4-5 kV(1.	2/50 μs)	2	
Autres données			
Rebond à la fermeture des contacts : NO/NC	ms	2/10	
Résistance aux vibrations (10200)Hz : NO/NC	g	20/6	
Résistance aux chocs NO/NC	g	20/5	
Puissance dissipée dans l'ambiance à vide	W	0.7	
à charge nominale	W	1.2	
Distance de montage entre relais sur circuit imprimé	mm	≥ 5	

Caractéristiques des contacts


F 50 - Durée de vie électrique (AC) en fonction de la charge (type 50.12)

12 14 22 24 12 14 22 24

Choix de sélection des contacts NO et NC pour utilisation en contacts guidés (liés mécaniquement), selon la norme EN 61810-3 (type B).

H 50 - Pouvoir de coupure maxi pour une charge en DC1

- La durée de vie électrique pour des charges résistives en DC1 ayant des valeurs de tension et de courant sous la courbe est \geq 100 x 103 cycles.
- Pour les charges en DC13, le raccordement d'une diode polarité inverse en parallèle avec la charge permet d'obtenir une durée de vie électrique identique à celle obtenue avec une charge en DC1.

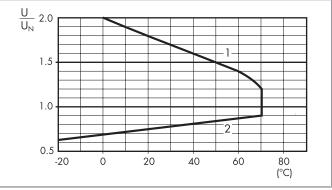
Note: le temps de coupure de la charge sera augmenté.

Caractéristiques de la bobine

Données version DC (type 50.12)

Tension nominale	Code bobine	Plage de fonctionnement		Résistance	I nominale absorbée
U _N		U _{min} U _{max}		R	I à U _N
V		V	V	Ω	mA
5	9 .005	3.8	6	35	143
6	9 .006	4.5	7.2	50	120
12	9 .012	9	14.4	205	58.5
24	9 .024	18	28.8	820	29.3
48	9 .048	36	57.6	3280	14.4
60	9 .060	45	72	5140	11.7
110	9 .110	82.5	131	17250	6.4
125	9 .125	93.7	150	22300	5.6

7.7

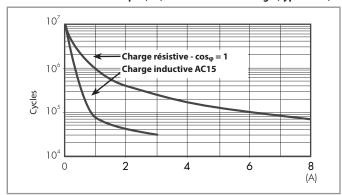

Données version DC (type 50.14/16) Tension Code I nominale Plage de Résistance absorbée nominale bobine fonctionnement U_N R $I \, \grave{a} \, U_N$ U_{min} Ω mΑ **9**.012 9 180 66.6 12 14.4 24 **9**.024 18 28.8 720 33.3 48 **9**.048 36 57.6 2880 16.6

131

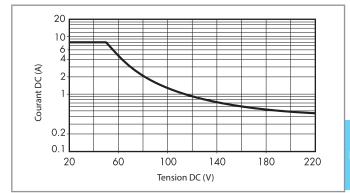
15125

82.5

R 50 - Plage de fonctionnement bobine DC en fonction de la température ambiante, bobine standard (type 50.12)

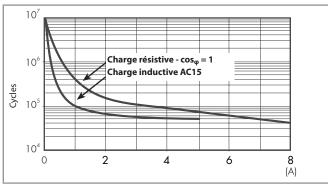

- 1 Tension max admissible sur la bobine.
- 2 Tension mini de fonctionnement avec la bobine à température ambiante.

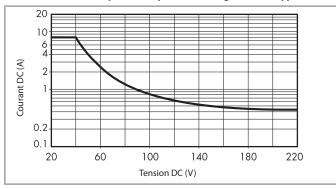
110


9.110

Caractéristiques des contacts

F 50 - Durée de vie électrique (AC) en fonction de la charge (type 50.14)

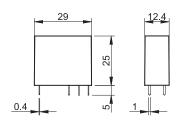

H 50 - Pouvoir de coupure maxi pour une charge en DC1 (type 50.14)


- La durée de vie électrique pour des charges résistives en DC1 ayant des valeurs de tension et de courant sous la courbe est ≥ 100 x 103 cycles.
- Pour les charges en DC13, le raccordement d'une diode polarité inverse en parallèle avec la charge permet d'obtenir une durée de vie électrique identique à celle obtenue avec une charge en DC1.

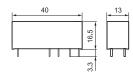
Note: le temps de coupure de la charge sera augmenté.

F 50 - Durée de vie électrique (AC) en fonction de la charge (type 50.16)

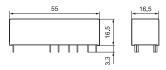
H 50 - Pouvoir de coupure maxi pour une charge en DC1 (type 50.16)



- La durée de vie électrique pour des charges résistives en DC1 ayant des valeurs de tension et de courant sous la courbe est $\geq 100 \times 103$ cycles.
- Pour les charges en DC13, le raccordement d'une diode polarité inverse en parallèle avec la charge permet d'obtenir une durée de vie électrique identique à celle obtenue avec une charge en DC1.


Note: le temps de coupure de la charge sera augmenté.

Schémas d'encombrement


Type 50.12...x000/50.12...5000

Type 50.14

Type 50.16

