

Profil environnemental produit

IZYMO SHUTTER

Acteur reconnu de l'habitat depuis plus de 50 ans, SOMFY agit pour réduire de 50% ses émissions de carbone d'ici 2030 et aide ainsi ses clients et partenaires dans leurs démarches environnementales.

Nos actions pour réduire notre bilan carbone :

PROPOSER DES PRODUITS ÉCO-CONÇUS*, AYANT UN IMPACT ENVIRONNEMENTAL RÉDUIT TOUT AU LONG DE LEUR CYCLE DE VIE

PROPOSER DES SOLUTIONS QUI AMÉLIORENT L'EFFICACITÉ ÉNERGÉTIQUE DES BÂTIMENTS ET LIMITENT AINSI LES ÉMISSIONS DE CO2.

[1]. Démarche d'éco-conception Somfy, identifiée par le label ACT FOR GREEN qui vise à réduire l'impact environnemental des produits tout au long de leur cycle de vie, de l'extraction des matières premières à la fin de vie, en plaçant les exigences au-dessus des règlementations en viqueur.

- Référence produit ·

> Produit de référence IZYMO SHUTTER

Réf. 1822660

> Unité fonctionnelle

Le micro contrôleur pilote à distance un volet roulant à motorisation filaire pendant une durée vie de 10 ans.

Ce produit appartient aux points de commande catégorie 2 produit actif du PSR5.

Références couvertes: 1822660, 1800085

Profil environnemental produit

IZYMO SHUTTER

Matériaux et substances -

Toutes les mesures nécessaires ont été prises pour s'assurer que les matériaux utilisés dans la composition du produit ne contiennent aucune substance interdite par la législation en vigueur au moment de la commercialisation.

Plastiques			Métaux			Autres		
	% masse	% rec		% masse	% rec		% masse	% rec
PC	10,0%	0%	Fil de cuivre	1,8%	0%	Alumine	0,8%	0%
PVC	4,3%	0%	Tantale	0,4%	0%	Silicone	0,7%	0%
Autre	0,8%	0%	Etain	0,3%	0%	Fibre de verre	0,7%	0%
Résine Epoxy	0,6%	0%	Cuivre	0,3%	0%	Autres	0,6%	0%
Pe-Lld	0,6%	0%	Nickel	0,1%	0%	Total	2,8%	
PP	0,3%	0%	Autre	0,0%		Packag	ing	
Total	16,6%	0%	Total	3,0%		Papier	48,1%	100%
						Carton	27,0%	50%
						Bois	2,5%	0%
						Total	77,6%	
Masse totale du flux	de référen	ce:	80,87g					

> Substances chimiques

Les produits couverts par ce PEP respectent le règlement REACH ainsi que la directive ROHS: 2011/65/EU, 2015/863, 2017/2102.

Representativité

- > Les données ont été collectés entre mars 2024 auprès des équipes de conception, puis traitées et analysées en septembre et novembre 2024. La période de référence des données est 2023.
- > Les données sont représentatives du lieu de fabrication et d'assemblage.
- > Les données correspondent aux technologies et à la conception des références commerciales citées précédemment uniquement.

Profil environnemental produit

IZYMO SHUTTER

| _ Fabrication –

Les produits couverts par ce PEP sont fabriqués sur un site SOMFY suivant les objectifs de réduction carbone du Groupe.

> Modèle énergétique

Mix énergétique basse tension Roumain, 2020

一 Distribution —

> Les notices sont en papier 100% fibres recyclées et le carton de l'emballage final contient au moins 50% de fibres recyclées. Ce scénario est considéré pour chaque envoie de produit Act for Green dans le monde.

L'emballage est continuellement amélioré pour en réduire la quantité et favoriser l'emploi de matières renouvelables, recyclées et recyclables.

🦎 — Installation -

> Éléments d'installation

Aucun élément prévu à cette phase.

> Procédures d'installation

Aucune procédure d'installation.

> Modèle énergétique

Non applicable

> Fin de vie emballage

Papier et carton: 91% recyclé, 5% incinéré et 4% enfoui

PSE: 27% recyclé, 43% incinéré et 30% enfoui

🎢 − Utilisation -

Pour le scénario d'utilisation retenu, le produit développe une puissance de 0,327 W.

- > Modèle énergétique pour la phase d'utilisation : Mix énergétique français ; 2020
- > Maintenance et consommables : Aucun

$\mathcal{G}_{\mathcal{T}}$ — Fin de vie —

> Conditions de transport types

Compte tenu de la difficulté d'établir une moyenne internationale sur le recyclage des DEEE dans le monde, nous choisissons le scénario pénalisant suivant :

- 100 km de transport.
- Un prétraitement des déchets d'équipements électriques et électroniques, y compris le démantèlement et le tri des matériaux.
- L'incinération des déchets d'équipements électriques et électroniques.
- Taux de chargement du camion allant à la déchèterie de 80%

Profil environnemental produit

IZYMO SHUTTER

- Impacts environnementaux –

L'évaluation de l'impact environnemental couvre les étapes suivantes du cycle de vie : fabrication, distribution, installation, utilisation et fin de vie. Tous les calculs ont été réalisés à l'aide du logiciel EIME© v6.2 et de CODDE-2024/04, sur l'unité fonctionnelle, avec le set d'indicateur suivant : Indicators for PEF EF 3.1 (Compliance: PEP ed.4, EN15804+A2) v2.0

Indicateurs	Unité	Global	Fabrication	Distribution	Installation	Utilisation	Fin de vie	Module D
Changement climatique	kg CO2 eq.	2,97E+00	9,05E-01	2,02E-02	1,14E-01	1,90E+00	3,24E-02	1,19E+00
Changement climatique - biogénique	kg CO2 eq.	1,56E-02	-6,31E-02	0,00E+00	7,03E-02	8,37E-03	5,40E-06	9,78E-01
Changement climatique - combustibles fossiles	kg CO2 eq.	3,00E+00	1,01E+00	2,02E-02	4,42E-02	1,89E+00	3,24E-02	2,12E-01
Changement climatique - occupation des sols et transformation	kg CO2 eq.							
de l'occupation des sols	kg CFC-11	1,25E-05	1,25E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Appauvrissement de la couche d'ozone	eq.	1,89E-07	1,48E-07	3,10E-11	9,91E-09	3,13E-08	2,70E-10	3,80E-08
Acidification	mol H+ eq.	1,94E-02	8,76E-03	1,28E-04	3,99E-04	1,01E-02	3,68E-05	8,17E-04
Eutrophisation aquatique, eaux douces	kg P eq.	9,19E-05	5,82E-06	7,58E-09	5,34E-07	8,53E-05	2,21E-07	-3,45E-06
Eutrophisation aquatique, marine	kg N eq.	2,59E-03	9,35E-04	6,00E-05	8,11E-05	1,50E-03	1,19E-05	-1,09E-04
Eutrophisation terrestre	mol N eq.	3,53E-02	9,94E-03	6,58E-04	7,09E-04	2,39E-02	1,33E-04	-3,60E-04
Formation d'ozone photochimique	kg NMVOC eq.	8,08E-03	3,40E-03	1,66E-04	1,98E-04	4,29E-03	2,95E-05	9,78E-05
Épuisement des ressources abiotiques - minéraux et métaux	kg SB eq.							
		1,26E-04	1,23E-04	7,95E-10	1,60E-08	2,58E-06	3,10E-10	7,81E-09
Épuisement des ressources abiotiques – combustibles fossiles	MJ	3,63E+02	1,43E+01	2,82E-01	7,88E-01	3,47E+02	7,84E-02	5,51E-01
Besoin d'eau	m3 eq.	9,77E-01	5,11E-01	7,67E-05	7,44E-02	3,91E-01	6,48E-04	5,04E-01
Émissions de particules fines	Disease occurrence	4,48E-07	4,50E-08	1,04E-09	2,19E-09	4,00E-07	2,22E-10	6,45E-09
Rayonnements ionisants, santé humaine	kBq U235 eq.	1,42E+02	5,35E+01	4,92E-05	4,22E+01	4,65E+01	1,51E-03	-1,32E-01
Écotoxicité (eaux douces)	CTUe	1,23E+01	4,97E+00	1,32E-02	6,08E-01	5,78E+00	9,23E-01	-1,11E+01
Toxicité humaine, effets cancérigènes	CTUh	1,38E-08	2,81E-09	3,55E-13	3,00E-09	3,64E-10	7,65E-09	-1,25E-07
Toxicité humaine, effets non cancérigènes	CTUh	2,36E-08	1,08E-08	6,87E-12	1,55E-10	1,17E-08	1,01E-09	4,20E-11
Impacts liés à l'occupation des sols/Qualité du sol	No dimension	1,54E-01	4,51E-02	0,00E+00	9,97E-05	1,08E-01	6,24E-05	0,00E+00
Energie primaire renouvelable utilisée comme de l'énergie	MJ	4,13E+01	1,79E+00	3,76E-04	1,11E+00	3,84E+01	4,51E-03	-5,95E+00
Energie primaire renouvelable utilisée comme de la matière	MJ							
première Total énergie primaire renouvelable utilisée	MJ	2,66E-01 4,16E+01	2,66E-01 2,06E+00	0,00E+00 3,76E-04	0,00E+00 1,11E+00	0,00E+00 3,84E+01	0,00E+00 4,51E-03	0,00E+00 -5,95E+00
		4,102.01	2,002.00	3,702 04	1,112.00	3,042101	4,512 05	3,332.00
Energie primaire non renouvelable utilisée comme de l'énergie	MJ	3,62E+02	1,39E+01	2,82E-01	7,88E-01	3,47E+02	7,84E-02	5,51E-01
Energie primaire non renouvelable utilisée comme de la matière première	MJ	4,39E-01	4,39E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Total énergie primaire non renouvelable utilisée	MJ	3,63E+02	1,43E+01	2,82E-01	7,88E-01	3,47E+02	7,84E-02	5,51E-01
Total énergie primaire utilisée	MJ	4,04E+02	1,64E+01	2,82E-01	1,90E+00	3,86E+02	8,29E-02	-5,40E+00
Utilisation de matière première recyclée	kg	5,70E-02	5,70E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation de combustibles secondaires renouvelables	MJ	0,00E+00						
Utilisation de combustibles secondaires non renouvelables	MJ	0,00E+00						
Volume net d'eau douce	m3	2,28E-02	1,19E-02	1,79E-06	1,73E-03	9,20E-03	1,71E-05	1,17E-02
Déchets dangereux éliminés	kg	4,80E+00	4,59E+00	0,00E+00	2,15E-03	1,89E-01	2,27E-02	4,69E-02
Déchets non dangereux éliminés	kg	7,45E-01	2,71E-01	7,09E-04	1,78E-02	4,55E-01	5,66E-04	1,11E+01
Déchets radioactifs éliminés	kg	2,29E-04	1,37E-04	5,05E-07	1,51E-06	9,01E-05	2,70E-07	3,58E-04
Composants destinés à réutilisation	kg	0,00E+00						
Matériaux destinés au recyclage	kg	3,65E-02	0,00E+00	0,00E+00	3,65E-02	0,00E+00	0,00E+00	0,00E+00
Matériaux destinés à la valorisation énergétique	kg	5,65E-15	5,65E-15	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Énergie exportée	MJ	9,17E-04	0,00E+00	0,00E+00	9,17E-04	0,00E+00	0,00E+00	0,00E+00

Profil environnemental produit

IZYMO SHUTTER

> Voici le détail des impacts du module B.

Indicateurs	Unité	Phase d'utilisation	B1	B2	В3	В4	B5	В6	В7
Changement climatique	kg CO2 eq.	1,90E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,90E+00	0,00E+00
Changement climatique - biogénique	kg CO2 eq.								
		8,37E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,37E-03	0,00E+00
Changement climatique - combustibles fossiles	kg CO2 eq.	1,89E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,89E+00	0,00E+00
Changement climatique - occupation des sols et transformation de l'occupation des sols	kg CO2 eq.	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Appauvrissement de la couche d'ozone	kg CFC-11 eq.	3,13E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,13E-08	0,00E+00
Acidification	mol H+ eq.	1,01E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,01E-02	0,00E+00
Eutrophisation aquatique, eaux douces	kg P eq.	8,53E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,53E-05	0,00E+00
Eutrophisation aquatique, marine	kg N eq.	1,50E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,50E-03	0,00E+00
Eutrophisation terrestre	mol N eq.	2,39E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,39E-02	0,00E+00
Formation d'ozone photochimique	kg NMVOC								
Épuisement des ressources abiotiques - minéraux et	eq.	4,29E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,29E-03	0,00E+00
métaux	kg SB eq.	2,58E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,58E-06	0,00E+00
Épuisement des ressources abiotiques – combustibles fossiles	MJ	3,47E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,47E+02	0,00E+00
Besoin d'eau	m3 eq.	3,91E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,91E-01	0,00E+00
Émissions de particules fines	Disease occurrence	4,00E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,00E-07	0,00E+00
Rayonnements ionisants, santé humaine	kBq U235 eq.	4,65E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,65E+01	0,00E+00
Écotoxicité (eaux douces)	CTUe	5,78E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,78E+00	0,00E+00
Toxicité humaine, effets cancérigènes	CTUh	3,64E-10	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,64E-10	0,00E+00
Toxicité humaine, effets non cancérigènes	CTUh	1,17E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,17E-08	0,00E+00
Impacts liés à l'occupation des sols/Qualité du sol	No dimension	1,08E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,08E-01	0,00E+00
Energie primaire renouvelable utilisée comme de l'énergie	MJ	3,84E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,84E+01	0,00E+00
Energie primaire renouvelable utilisée comme de la matière première	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Total énergie primaire renouvelable utilisée	MJ	3,84E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,84E+01	0,00E+00
Energie primaire non renouvelable utilisée comme de l'énergie	MJ	3,47E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,47E+02	0,00E+00
Energie primaire non renouvelable utilisée comme de la matière première	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Total énergie primaire non renouvelable utilisée	MJ	3,47E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0.00E+00	3,47E+02	0,00E+00
Total énergie primaire utilisée	MJ	3,86E+02	0,00E+00	0,00E+00	0,00E+00	0.00E+00	0.00E+00	3,86E+02	0,00E+00
Utilisation de matière première recyclée	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation de combustibles secondaires renouvelables	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation de combustibles secondaires non	MJ	0.005:00	0.005:00	0.005:00	0.005:00	0.005 : 00	0.005:00	0.005 : 00	0.005 : 00
renouvelables		0,00E+00 9,20E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00 0,00E+00	0,00E+00	0,00E+00 9,20E-03	0,00E+00
Volume net d'eau douce Déchets dangereux éliminés	m3 kg	1,89E-01	0,00E+00 0,00E+00	0,00E+00 0,00E+00	0,00E+00 0,00E+00	0,00E+00 0,00E+00	0,00E+00 0,00E+00	1,89E-01	0,00E+00 0,00E+00
Déchets non dangereux éliminés	kg	4,55E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,55E-01	0,00E+00
Déchets radioactifs éliminés	kg	9,01E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,01E-05	0,00E+00
Composants destinés à réutilisation	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Matériaux destinés au recyclage	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Matériaux destinés à la valorisation énergétique	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Énergie exportée	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

> Carbone biogénique : 0,000 kg C. biogénique pour le produit, 0,03 kg C. biogénique pour l'emballage, en utilisant la méthodologie -1/+1 est utilisée pour le set EF3.1

Profil environnemental produit

IZYMO SHUTTER

> Ces impacts environnementaux sont uniquement applicables au produit de référence mentionné en page 1.

> Aucuna	règles	d'evtrano	lation sur	la consomm	ation
- Aucune	1 GE (G2)	u extravo	tation sur	ta Consoniii	auon

N° enregistrement : SOMF-00193-V01.01-FR	Règles de rédaction : PCR-ed4-FR-2021 09 06	Règles de rédaction : PCR-ed4-FR-2021 09 06				
	Complété par : PSR-0005-ed3.1-FR-2023 12 08	.1-FR-2023 12 08				
N° d'habilitation du vérificateur : VH50	Information et référentiel : www.pep-ecopassport.org					
Date d'édition :12-2024	Durée de validité : 5 ans					
Interne Externe Revue critique du PCR conduite par un panel d'experts prés	sidé par Julie ORGELET (DDEMAIN)					
Conforme à la norme ISO 14025 sur les déclarations environ		PEP				
Les PEP sont conformes aux normes NF C08-100-1 :2016 et	EN 50693 :2019 ou NF E38-500 :2022	eco				
	EN 50693 :2019 ou NF E38-500 :2022 re comparés avec les éléments issus d'un autre programme					
	re comparés avec les éléments issus d'un autre programme	PASS				

Interlocuteur Somfy: Justine Tavernier, Ingénieur en Ecoconception, justine.tavernier@somfy.com